// rf22_mesh_client.pde
// -*- mode: C++ -*-
// Example sketch showing how to create a simple addressed, routed reliable messaging client
// with the RHMesh class.
// It is designed to work with the other examples rf22_mesh_server*
// Hint: you can simulate other network topologies by setting the
// RH_TEST_NETWORK define in RHRouter.h
// Mesh has much greater memory requirements, and you may need to limit the
// max message length to prevent wierd crashes
#define RH_MESH_MAX_MESSAGE_LEN 50
#include <RHMesh.h>
#include <RH_RF22.h>
#include <SPI.h>
// In this small artifical network of 4 nodes,
#define CLIENT_ADDRESS 1
#define SERVER1_ADDRESS 2
#define SERVER2_ADDRESS 3
#define SERVER3_ADDRESS 4
// Singleton instance of the radio driver
RH_RF22 driver;
// Class to manage message delivery and receipt, using the driver declared above
RHMesh manager(driver, CLIENT_ADDRESS);
void setup()
{
Serial.begin(9600);
if (!manager.init())
Serial.println("init failed");
// Defaults after init are 434.0MHz, 0.05MHz AFC pull-in, modulation FSK_Rb2_4Fd36
}
uint8_t data[] = "Hello World!";
// Dont put this on the stack:
uint8_t buf[RH_MESH_MAX_MESSAGE_LEN];
void loop()
{
Serial.println("Sending to manager_mesh_server3");
// Send a message to a rf22_mesh_server
// A route to the destination will be automatically discovered.
if (manager.sendtoWait(data, sizeof(data), SERVER3_ADDRESS) == RH_ROUTER_ERROR_NONE)
{
// It has been reliably delivered to the next node.
// Now wait for a reply from the ultimate server
uint8_t len = sizeof(buf);
uint8_t from;
if (manager.recvfromAckTimeout(buf, &len, 3000, &from))
{
Serial.print("got reply from : 0x");
Serial.print(from, HEX);
Serial.print(": ");
Serial.println((char*)buf);
}
else
{
Serial.println("No reply, is rf22_mesh_server1, rf22_mesh_server2 and rf22_mesh_server3 running?");
}
}
else
Serial.println("sendtoWait failed. Are the intermediate mesh servers running?");
}